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On the basis of dimensional analysis through a differentiated approach to 
the dimensions of length we have obtained formulas for the effect of flow 
twisting i~ a circular tube on the hydraulic resistance and exchange of 
heat. 

As flow twisting finds increasing application for purposes of intensifying heat exchange, 
we note an increasing need for reliable information regarding its effect on hydraulic resis- 
tance and heat exchange. Presently this effect is described by means of empirical relation- 
ships that differ substantially in terms of results and are not in sufficient agreement 
with the statements of dimensional analysis. 

Based on dimensional analysis, in this paper we have generalized familiar criterial 
relationships for uniform motion in a tube to the case of twisted motion. On the basis 
of the recommendations of Huntley [I] we have assigned his units of measurement to each 
of three dimensions of length over the directions of the coordinate axes. Such an increase 
in compariso n with the traditional approach in the number of basic measurement units leads 
to single-valued relationships between hydraulic resistance and heat exchange and the degree 
of twisting without resort to experimental data. 

Let us assume that the axis of the tube coincides with the x axis of a rectangular 
coordinate system xyz. With uniform flow, the pressure losses per unit length of tube, 
i.e., dp/dx, are determined by the average velocity of motion U of the tube, the tube diam- 
eter D, and by the density and viscosity of the liquid, p and p, respectively, in the case 
of flow twisting, the average circular component of flow velocity W is added to the number 
of quantities which affect hydraulic resistance. Its direct application leads to the appear- 
ance in the criterial equation of a cofactor which when W = 0 vanishes or becomes infinite, 
which contradicts physical reality and prevents us from using the familiar results from 
uniform flow to generalize to the case of a flow with twisting. Therefore, in the following 

we will use the resulting velocity V = ~U-f-+--W~.= U/cos ~ = W/sin 9, where ~ is the angle 
between the velocity vectors U and V. 

Let us present the pressure gradient as a function of the remaining quantities in the 
form 

dp = CD~U~p~V ,. (i) 
dx 

The dimension [U] = Lx T-I, [p] = MLx-~Ly-ILz -i, [dp/dx] = MLy-ILz-IT -2. Here Lx, Ly, 
and L z are units of length measurements in the direction of the axes x, y, and z; M and 
T are units of mass and time measurement. When we take into consideration the axial sym- 

�9 . i/2 L i/2 
merry of the process relatlve to the x axis [i], the dlmension [D] = Ly z " 

Let us determine the dimension of velocity V. It is obvious that when ~ = 45 ~ the 

dimension of V with identical exponents must include Lx and L w which are the units of length measure- 
ment for the circumference in theyoz plane: IV] =Lxl/=Lwl/2T -I =Lxl/2Lyl/4Lzl/4T -I. When~= 0 ~ 

[V] = Lx T-I, and when ~ = 90 ~ , [V] = Lw T-I = Lyl/2Lzl/2T-l. We can see from these expres- 
sions that the exponents for the units of length in the dimension of V are linearly dependent 

on ~. Therefore, in the general case [F] fl-2~/=r~/=f~/=T-! 

According to [i], the length units in the dimensional formulas for viscosity and flow 
velocity coincide: 

Tatar Scientific Research and Design Institute for Petroleum Machinery Construction, 
Kazan ~. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 2, pp. 207-210, February, 
1989. Original article submitted October 14, 1987. 

133 0022-0841/89/5602-0133512.50 �9 1989 Plenum Publishing Corporation 



[~1 = LTt~-~/~') LT~/"L7 */~'MT-~. 

Having substituted into (i) the dimensions of the corresponding quantities, we obtain 

MLT'  LF~T -2 =: t~tl ' /~l ' /9r , (L,,T-a)t' (MLT' L-u' L2~) ' • 

• (LT'~L~LF~MT-')a(L~ tyLz f~ I~ T-~)t,  ( 2 )  

where a = i -- 2 ~ / ~ ,  ~ = (p/~. 

Having equated the exponents for the units of length, 
following system of equations: 

time, and mass, we obtain the 

O = b - -  c - -  o~d -}- e,e, | a 

2 
a 

- - 1  . . . . . .  c - - ~ d + ~ e , - - 2 = - - b - - d - - e ,  l = c + d ,  
2 

(3) 

from which it follows that a = -i -d, b = 2 -d- (i -~d)/(l -a), c = 1 -d, 
c~d)/(1 - c~). 

The coefficient of hydraulic resistance 

I--~ 

._ dp/dx =- 2CRe -~(cosg~) l -~  
pUZ/2D 

For uniform turbulent flow, if we use the Blasius formula ~0 = 0 . 3 1 6 R e - ~  25 

e= (i-- 

(4) 

, we obtain 

3 g  1 

~,/Zo = (cos  q~) 8~ 4 ( 5 )  

The coefficient of heat conduction ~h for the case of uniform flow in a tube is deter- 
lained by the quantities p, p, D, and U, by the coefficient of thermal conductivity Xh, and 
by the heat capacity C m per unit liquid mass. The resulting velocity V in the twisting 
of a flow is added to the number of quantities affecting heat exchange. 

Let us present the relationship between the coefficient of heat conduction and the 
remaining quantities in the form 

ab cd  e" f 
~h = C~ p D lhCmU V .  ( 6 )  

t o  [ 1 ] ,  t h e  d i m e n s i o n  o f  h e a t  c a p a c i t y  [C m] = L x 2 / 3 L y 2 / 3 L z 2 / 3 T - 2 0  - 1 ,  w h e r e  A c c o r d i n g  
0 i s  t h e  u n i t  o f  t e m p e r a t u r e .  P r o c e e d i n g  f r o m  t h e  d e f i n i t i o n  o f  t h e  c o n c e p t  o f  t h e  c o e f f i -  

o f  b e a t  c o n d u c t i o n  and  t h e r m a l  c o n d u c t i v i t y ,  we f i n d  t h a t  [~h]  = L x - Z / a L y l / 6 L z  1 /6"  c~ents 

MT-a@ -I, [Ah] = Lx-I/3Ly2/3Lz2/3MT-a@ -I. 

Having substituted the dimensions of the corresponding quantities into (6), we have 

L - ' / a t  '/61'/sMT-aA-i = (LT 'ZL~L~aMT- ' )  a X 

l hA l - - l  l - -11 - - l  xb I I  1 /21  1/21c 11  - I / 3 1 2 / 3 1 2 / 3 1 L " U P - - 3 6 2 1 - - 1 1 #  
X %t~JJ.X ~ y  ,t-,z ] ~*'y t ' z  ! V"'X "-'!t ~ z  ~v.,dt ".J ! X 

2/3 2/3 2t3 --2 --I e 1 [ o~ 13 I~ --l q X (L~: L u L~ T 6) ) (L~T- - ) (L: ,LuL~T ) .  

(7) 

Having equated the exponents for identical units of measurement, we obtain the system 
of equations: 

1 d 2 1 c 
...... 3 ore--b----+3 -ff- e + f + ~g' --6 .... ~a-- b + 2 + 

_2_d ~ l - - k - - b +  c 2 2 
-3- 3 + ---ff- e + ~g, 6 = - ~ -  -~ ---ff- d .q- .-~-.- e q- ~g, 

(8) 

l = a + b + d ,  - - 3 - - - - ~ - a - - 3 d - - 2 e - - [ - - g ,  - -  l = - - d - - e ,  
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Fig. 1 Fig. 2 

Fig. !. The ratio ~/~0 as a function of the flow twisting 
angle ~: i) formula (5); 2) empirical relationship [2]. 

Fig. 2. Ratio Nu/Nu 0 as a function of the flow twisting angle 
~: i) formula (i0); 2) region over which the experimental 
data of various authors are scattered in the twisting of a 
flow by a twisted strip [4]; 3, 4) empirical relationships [3, 
2]. 

from which we find that a = -b + e, c = b - i, d = 1 - e, f = b(l -a/(l - =)) - e, g = 
ab/(l - ~) + e. 

It follows from expression (6) that 

Oh E) . . . .  N u  :-- e r e  b P r  ~ ( cos  qD) 1 -  2-~ --" 
)~h (9) 

Bearing in mind that with uniform turbulent flow Nu 0 = 0.023Re~ ~ we have 

0.6---- 

N u / N u o  = ( cos  r 2~ (10) 

Let us compare the r e s u l t s  of  the c a l c u l a t i o n s  by means o f  fo rmulas  (5)  and (10) w i t h  
the experimental data presented in [2-4]. The degree of flow twisting was characterized 
in [2, 3] by the ratio of the circular and longitudinal momenta of the liquid. In order 
to make the transition from this quantity to the angle ~ we resorted to the empirical data 
of [2]. The results from various authors, dealing with the twisting of a flow by means 
of a twisted strip, are represented in [4]. With the transition from the strip-twisting 
parameter to the angle ~ it was assumed that the angle of flow twisting at each radius is 
equal to the corresponding angle of strip twisting. 

As we can see from Figs. ! and 2, the results from the calculations according to form- 
ulas (5) and (i0) are in satisfactory agreement with the experimental data. 
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